by Samantha Monk
As escalating civil unrest flares up across the globe, displacing thousands and costing people their lives, attempts to understand the causes of these violent eruptions have also multiplied. In this post, I look for evidence of a correlation between income inequality and political stability.
“Deprivation rationalizations” for these conflicts, revolutions, or uprisings argue that revolutions occur when significant segments of the population are at a strong disadvantage to those in power. Basically, the belief is that disenfranchised groups are motivated to take action against governments that are failing them.
Researchers like Alberto Alesina and Robert MacCulloch have attempted to validate this hypothesis using a variety of variables and statistical techniques. Some have used survey data to evaluate attitudes towards revolt. Others have used political change as a measure of propensity for revolution. Some have created their own variables to try to represent “political stability”, which is a vague concept and thus difficult to quantify. Others have used case studies to highlight examples where economic inequality was not a major factor in regime destabilization; two such articles are summarized here.
Here, I’ve used data from Polity IV and GINI coefficients to investigate a potential correlation between political instability and income inequality. Polity IV scores country stability based on a variety of factors, including regime type and data about military coups, uprisings, civil liberties, and political rights. A low polity score means the country is highly unstable. This is not a perfect variable; an aggregate variable which includes many factors might insinuate false correlations.
I used GINI coefficient to measure income inequality. A GINI coefficient of zero signifies a perfectly equal distribution of income, while a value of one signifies maximum inequality. There are also critiques of the GINI coefficient. It doesn’t always accurately depict the severity of the inequality. For example:
- If 100 people live in a country, and 50 of them have all the money, then GINI = .5
- If 75 of them have 25% of the money, and the remaining 25 people have 75%, GINI = .5.
I also included log GDP as a control variable, in an attempt to limit the impact that GDP may have in skewing the data to show stable countries as those with lower income inequality. Other important control variables are military expenditure and oil rents. These variables are often related to political instability and income inequality, so it’s worth taking them into account. Some scholars argue that political instability scares leaders into investing in armies and weapons to protect themselves. Other evidence suggests that oil makes the rich get richer (they control the resources initially and then soak up all the profits) while the poor get poorer. Summary statistics for all variables can be found in Table 2 at the end of this post.
Figure 1 shows the effect of Economic Inequality (GINI coefficient) on Political Instability (Polity IV score). Neither the loess line (in black) nor the OLS regression line (in burgundy) fits the data very well, suggesting either a low correlation, or that outliers are dragging the line away from where it really belongs. However, it does look at first glance like lower GINI scores (incomes are fairly equal) do in fact have a slight tendency to be more politically stable.
The most serious limitation to this study is that the measurements used can be interpreted as carrying many different meanings. This research used the Polity IV score for political stability, which has been criticized as subjective and vague, among other things. GINI index, although widely used is also criticized for a variety of reasons, including its sensitivity to population distribution.
Another potential limitation of this analysis is that I picked data from one specific year, 2012. In order to have enough cases for analysis, I had to supplement this with some data from 2010, 2011, and 2013. It may be that these slight departures from accuracy caused some unintended statistical consequences. It may also be more useful to consider data over a period of time, as it is unlikely that the political events of one year alone can accurately describe the long term political stability (or lack thereof) of a government.
In light of current events in many areas of the world, questions about what causes political instability are especially valid, but unfortunately, this research has so far failed to provide any useful hints.
Sources
Alesina, A., and R. Perotti. "Income Distribution,
Political Instability, and Investment.” European Economic Review: 1203-228.
Alesina, Alberto, Sule Özler, Nouriel Roubini, and Phillip
Swagel. "Political Instability and Economic Growth." Journal of Economic Growth: 189-211.
Campos, Nauro F, and Jeffrey B Nugent. "Who Is Afraid of Political Instability?" Journal of Development
Economics: 157-72.
Dutt, Pushan, and Devashish Mitra. "Inequality and the
Instability of Polity and Policy." The Economic Journal: 1285-314.
MacCulloch, Robert. "Income Inequality and the Taste for
Revolution*." The Journal of Law and Economics: 93-123.
Marshall, Monty G., and Benjamin R. Cole. "State
Fragility Index and Matrix 2013." Center for Systemic Peace; see http://www.systemicpeace.org/inscr/SFImatrix2013c.pdf
Midlarsky, M. I. "The Origins of Democracy in Agrarian
Society: Land Inequality and Political Rights." Journal of Conflict
Resolution, 1992, 454-77.
Muller, E. N., and E. Weede.
"Theories of Rebellion: Relative Deprivation and Power Contention."
Rationality and Society, 1994, 40-57.
"What Is the
Relationship Between Income Inequality and Revolution?" Freakonomics RSS.
Accessed March 17, 2014 http://freakonomics.com/2012/09/25/what-is-the-relationship-between-income-inequality-and-revolution/.
World Bank. (2014). Data retrieved November 2014, from World Development Indicators Online (WDI) database.
I liked how this was presented. As a reader I felt that the language was, at times, a little obtuse and there were run on sentences that linked two subject sentences.
ReplyDeleteFor the graph- perhaps labeling the outlier countries and giving a short explanation in the legend of the graph as to why you would not "count" them would be useful as it feels arbitrary (as it is written now). It is important to note who the outlier contries are, though. Personal opinion.
Close to the end, you mention needing to supplement your data with other years' data- This could have gone much earlier in the text, perhaps after the tangential "literature review." On the subject of the overview of literature (I know it shouldn't be more than a few sentences) I think that your blog post could use some news articles or scholarly article references to alert the reader of what else is being said about the subject.
Considering that the data from year 2012 was insufficient, I appreciate that you noted that a time series analysis may be more effective at capturing the relationship. But, this is also an opportunity to have your own opinion (substantiated by article references etc.)
In all I appreciate how you calmly addressed issues in the model and the data and did not "freak out" with your analysis. You reported what you saw and kept it simple. Which is another reason I think you can insert some opinions in here...
Simple read, maybe use less roundabout language, but in all it was easy to understand and the layout was nice as well.
Oh, and maybe you should change the x-axis label on your graph to reflect the name of the variable
Hi: Thanks for your comments. I'm really hesitant to be overly opinionated on a subject where I'm not an expert, but I think upon re-reading that you are right and this could use some more opinion. I also tried to write more clearly for the revisions.
DeleteI enjoyed the way you introduced the topic and felt you gave secient but informative background. Your variable explanation was also helpful and clear.
ReplyDeleteI did notice that you use labels of Table 2 and Figure 3 but there is no Table 1 or Figures 1-2. A quick relabeling would be helpful. Also, a relabeling of the variables on the figure might also add a little clarity. Another stylistic point would be moving the independent variable to the top of regression table. The peer review sheet also explicitly asks if the is a table of summary statistics which is not here and should probably be included even though your variable explanation in paragraph form was great.
Looking at the figure, I notice that if you take away the data outlier that you highlighted, the data appears to have a fairly significant skew and I am wondering if you had considered that in your analysis. It will also be helpful to see some explanation about the difference between the models reported and why you chose to run those models specifically the way you did. You explain the models separately but I think discussing why they help explain each other or something like that would be helpful.
I appreciated your acknowledgement of limitations and issues with your data and analysis. I also liked the fact that you addressed the effects and results that came from your control variables and interpreting what those effects mean for the model and for the original question posed.
I think is post is well written and dives deep into the results and the potential drawbacks of the analysis and does not focus too much on previous work or non-statistical inferences.
Thanks! You're right about the appearance of skew, so I did skew test for both variables and tried the graphs using logs for each individual variable and then for both. The graphs looked completely crazy. I'm probably still missing something here but I appreciate your pointing it out.
DeleteWhile your research question is clear and relevant, it is no clear why the "tendiness" of inequality in the 90s invalidates or casts doubt on the resutls. You could simply say that you are checking previous results against new data to confirm validity.
ReplyDeleteWhy are oil rents and military expenditures chosen as control variables? Other researchers may have chosen them but it is not clear why?
Why is the Norway data incorrect? Norway has very high GDP per capita (due to oil exports) and is extremly stable so its placement is not entirely surprising. Also looking at the bivariate graph i am not entirely sure i agree with the conclusion that there is a trend towards low GINI leading to instability. It seems more that there is an almost equal split above and below the 0 or -0.5 line unless of course there are multiple dots for some (X,Y) values above the 0 line in which case a little jittering might help.
You should add a table of summary statistics.
Be more specific about your models. You have 3 models but only discuss the bivaraite one and group models 1 and 3 together in your analysis.
You conclude that GDP only has a slight correlation despite being very significant. The problem with your conclusion is that the B (effect parameter) of GDP is not measured in relative terms to other Bs. While it is a very small number, in real terms its impact could be very big (especially since we are talking about GDP sizes).
Other than that the table look great.
You should discuss potential omitted variables and confounds. You do rightfulyl metion that an over time study would be better but you should further discuss endogeneity or time order issues. Is GDP per capita (or inequality) causing political instability or is that politically unstable nations tend to have lower GDP (due to economic problems, investment risk...) and more income inequality.
Finally, in rejecting your hypothesis I would not reject it outright but state that given the data not correlation was found. Your data is limited time wise and that could be the reason for the lack of correlation.
Hi Robert: Thanks for your comments, they were very insightful. The point about Norway in particular made me realize I'd been sometimes interpreting the GINI coefficient backwards and that obviously had a significant impact on how I was viewing the results, so thanks!
DeleteThis comment has been removed by the author.
ReplyDelete